新闻中心

重要事件

硅酸盐和硫铝酸盐复合水泥性能的研究分析解析

2020-03-19 07:19 作者:pokerking club 点击:

  硅酸盐和硫铝酸盐复合水泥性能的研究分析解析_幼儿读物_幼儿教育_教育专区。硅酸盐和硫铝酸盐复合水泥性能的研究分析解析

  硅酸盐和硫铝酸盐复合水泥性能的研究 班级:材料 1003 班 姓名: 摘要 本论文从研究硫铝酸盐水泥熟料、硅酸盐水泥熟料、粉煤灰、二水石膏四 种原料复合后的水泥体系的物理性能入手,运用 xRD 衍射和扫描电镜等方法测 试复合水泥体系的水化产物, 对该复合水泥体系的水化机理进行了详细的探讨, 通过复合水泥矿物组成和水化产物的理论计算, 初步探讨复合水泥矿物的匹配。 本文确定了性能较好的各组分的配合比。研究表明,在硅酸盐水泥熟料中 掺入 10%以下硫铝酸盐水泥熟料的情况下,当石膏掺量为 10%,CSA 熟料含量 在 5%左右时, 复合系统各方面的性能指标比较理想。 当硅酸盐水泥熟料中掺入 少量硫铝酸盐水泥熟料后,并配以适量的石膏掺量,可以提高硅酸盐水泥的早 朗强度,抗压强度平均提高 5MPa,同龄期抗折强度也有所提高。两种熟料复合 后,水泥体系的凝结时间会明显缩短。 关键词:硅酸盐水泥,铝酸盐水泥,复合,性能 指导老师: I 目录 第 1 章 绪论 ------------------------------------------------------------------------------------- 1 1.1 引言 ------------------------------------------------------------------------------------- 1 1.1.1 硅酸盐水泥的发展概况 ---------------------------------------------------- 1 1.1.2 硫铝酸盐水泥的发展概况 ------------------------------------------------- 3 1.2 硅酸盐和硫铝酸盐复合水泥体系的研究现状 --------------------------------- 4 1.3 论文选题的目的及意义 ---------------------------------------------------------- 5 1.3.1 研究目的 ---------------------------------------------------------------------- 5 1.3.2 论文选题的意义 ------------------------------------------------------------- 6 1.4 研究内容 ---------------------------------------------------------------------------- 7 第 2 章 实验内容 ------------------------------------------------------------------------------- 8 2.1 实验原料 ------------------------------------------------------------------------------- 8 2.2 材料化学成分 ------------------------------------------------------------------------- 8 2.3.1 复合水泥的制备 ----------------------------------------------------------- 11 2.4 水泥物理性能测定 ----------------------------------------------------------------- 11 2.4.1 水泥净浆标准稠度用水量和凝结时间 -------------------------------- 11 2.4.2 水泥砂浆抗压强度和抗折强度 ----------------------------------------- 11 2.5 水泥微观分析 ----------------------------------------------------------------------- 11 2.5.1 水泥净浆水化产物的取得 ----------------------------------------------- 11 2.5.2 XRD 分析水泥水化产物的组成 ---------------------------------------------- 12 2.5.3 扫描电镜(SEM)分析法观察水泥净浆水化产物的形貌 ------------------ 12 II 2.6 试验仪器与设备 -------------------------------------------------------------------- 12 III 2.6.1 宏观测试用仪器设备 ----------------------------------------------------- 12 第 3 章 分析与讨论 -------------------------------------------------------------------------- 13 3.1 组成材料对复合水泥凝结时间的影响 ---------------------------------------- 13 3.1.1 熟料组成对复合水泥凝结时间的影响 -------------------------------------- 14 3.1.2 石膏掺量对复合水泥凝结时间的影响 -------------------------------- 14 3.3 R3 微观试验结果与分析 --------------------------------------------------------- 15 3.3.1 XRD 测试结果与分析 ---------------------------------------------------- 15 第 4 章 复合水泥水化机理进一步探讨 ------------------------------------------------- 16 结论 --------------------------------------------------------------------------------------------- 17 参考文献 --------------------------------------------------------------------------------------- 17 致谢 --------------------------------------------------------------------------------------------- 18 III 第 1 章 绪论 1.1 引言 自从水泥工业性产品的实际应用以来,生产持续扩大,工艺和设备不断改 进,品种和质量也有极大的发展。硅酸盐水泥和硫铝酸盐水泥的应用十分广泛 在硫铝酸盐早强水泥使用说明里,明文规定,硫铝酸盐水泥不得同其它品种水 泥混合使用[1]。例如,硫铝酸盐水泥同硅酸盐水泥混合使用时,将容易出现水泥 快凝甚至速凝或闪凝;水泥试体膨胀,导致强度降低,甚至胀裂、溃散。但根 据试验,当这两种水泥按规定的比例均匀混合时,不仅可以用,而且,尚能获 得有某些性能特色的复合水泥。在硫铝酸盐水泥中可掺入少量硅酸盐水泥和矿 渣等材料,在水泥强度不降低的条件下,可明显降低生产成本;在复合水泥中 掺用适当的激发剂,可明显提高复合硫铝酸盐水泥的强度。所以我们有必要研 究粉煤灰对硅酸盐和硫铝酸盐复合水泥性能的影响。 1.1.1 硅酸盐水泥的发展概况 硅酸盐水泥,又称波特兰水泥(英语:Portland Cement) ,是由硅酸盐水 泥熟料、0%-5%石灰石或粒化高炉炉渣、适量石膏磨细制成的水硬性胶凝材料。 硅酸盐水泥熟料的主要成分为硅酸三钙 3CaO·SiO2,硅酸二钙 2CaO·SiO2,铝 酸三钙 3CaO·Al2O3 和铁铝酸四钙 4CaO·Al2O3·Fe2O3。当与水混合时,发生复 杂的物理和化学反应,为水合(hydrate)反应。从水泥加水搅拌后,成为具有可 塑性的水泥浆, 到水泥浆逐渐变稠失去塑性但尚未具有强度, 这一过程称为 “凝 第 1 页 结” 。随后产生明显的强度并逐渐发展成坚硬的水泥石,这一过程称为硬化 (harden)。 凝结和硬化是人为划分的, 实际上是一个连续的物理化学变化过程[2]。 自本世纪 70 年代以来, 世界性的能源危机迫使主要能耗产业之一的水泥工 业把降低能耗作为其主要解决的问题和发展方向。我们知道,硅酸盐水泥的生 产热耗主要为熟料燃烧所需的热量(约占 73%),而烧成热耗主要用于 CaC03 分 解。近年来,随着科学技术的发展和水泥生产工艺与设备的进步,工业发达国 家的水泥生产单位热耗较之 40 年前降低了 50%以上, 达到了 3, 000KJ/kg 熟料 以下,已接近了水泥生产热耗的理论值(约为 2,000KJ/Kg 熟料)。因此,从现 有的工艺与装备上再进一步降低能耗的潜力已不是很大了。大量的科学研究证 明,从研究水泥熟料矿物组成和开发新品种水泥的角度出发,进行研究开发以 达到降低能耗的目的,呈现出巨大的发展潜力。 进入 90 年代以后,随着人类生存环境的恶化,环保问题倍受关注。同时, 人们对水泥生产提出了越来越高的要求。可持续发展战略不但要求水泥行业降 低甚至消除自身排放的 C02 和粉尘等污染, 而且更要成为能够消纳处理其它工业 排出的各类废渣和副产品的“绿色建材”[3]。 与其它行业相比,水泥工业是很少排出大量固体废弃物和副产品的行业之 一。因此,实现水泥工业绿色化与可持续发展需要进一步研究与发展的重点是 如何通过降低熟料用量和改变熟料矿物组成来进一步降低 C02 的排放量。 纵观当 前的研究领域,国内外的研究工作者主要从以下几个方面进行了探索: 第一方面是节能型熟料系统一通过改变熟料矿物组成, 降低 CaC03 的用量以 降低熟料烧成温度和能耗,同时降低 CO2 的排放量。开发适应于以不同工业废弃 物和废产品作为原材料的熟料系统。 第 2 页 第二方面是混合材的应用技术一包含合适的熟料系统 (单一的或复合的)的 选择,混合材的预处理(化学激发或超细粉磨等)以及各类外加剂的开发。 第三方面是功能材料一通过采取适当的制备工艺,使材料具备早强、快凝、 膨胀等一系列优异的性能。 1.1.2 硫铝酸盐水泥的发展概况 20 世纪七、八十年代,中国相继发明的普通硫铝酸盐水泥和铁铝酸盐水泥 (由于把以 C3S 矿物为主的铝酸盐水泥各品种称为第一系列水泥, 把以 CA 矿物为 主的铝酸盐水泥各品种称为第二系列水泥, 所以在中国又把以 C4A3S 矿物为主的 硫铝酸盐水泥各品种称为第三系列水泥),与硅酸盐水泥相比,其水泥熟料矿物 的组成属于另一个物理化学系统。其矿物成分以 C4A3S 为主,该矿物为第三系列 水泥具有早强、高强、抗冻、抗渗、耐蚀和耐碱等优异性能提供了物质基础。 硫铝酸盐水泥的发明曾在以下四个方面取得了重大的技术突破。 第一是理论上的突破。在研究 C4A3S 的过程中,发现该矿物与 C2S 匹配后既 有早强又有高强性能,而后又发现 C4A3S、C2S 和 C6AF2 匹配的烧结物也有很好的 胶凝性能。 第二是生产上的突破。研究者发现采用我国储量丰富的低品位矾土和石膏 就能生产出以 C4A3S、C2S 和 C6AF2 等矿物为主的熟料。现有回转窑工艺和相应设 备经适当改造后就可生产硫铝酸盐水泥。 第三是性能上的突破。硫铝酸盐水泥在理论研究阶段被发现的早强、高强 等性能在应用研究阶段得到了证实。这种水泥还具有一系列比硅酸盐水泥更为 优异的性能,如抗渗、耐腐、抗冻,并且用一种熟料可制成早强、膨胀和自应 第 3 页 力等不同性能的水泥。普通硫铝酸盐水泥另一个突出的性能是其水化液相碱度 比硅酸盐水泥低的多,这为抑制碱一集料反应和生产优异的 GRC 产品提供了可 能。 第四是应用上的突破。在硫铝酸盐水泥推广过程中碰到了许多施工技术问 题,其中主要问题之一就是水泥的凝结时间。硫铝酸盐水泥凝结时间比硅酸盐 水泥要短些,对于一般工程问题可以满足施工要求,但对某些工程则不能适应。 在研究工作中找到了适用于硫铝酸盐水泥的专用外加剂,这种外加剂能在很大 范围内调节混凝土的硬化时间,使其能满足各种混凝土工作性能的要求。但硫 铝酸盐水泥也存在一些问题,凝结时间不易控制,成本较高等。因此在硅酸盐 水泥和硅酸盐基水泥的发展过程中, 出现了多种改性的硅酸盐水泥和复合水泥。 1.2 硅酸盐和硫铝酸盐复合水泥体系的研究现状 尚百雨的论文主要研究了硅酸盐水泥熟料(立窑)一硫铝酸盐水泥熟料一硬 石膏三元系统相关区域材料性能的发展规律,在此基础上,又进一步研究了不 同品种、不同掺量的混合材(矿渣、粉煤灰、石灰石)对复合系统性能的影响规 律,从而大致确定了对硅酸盐水泥进行改性的硫铝酸盐水泥熟料和硬石膏的掺 量范围,通过大量试验,他大致确定了具有快硬、快凝等特性的功能性材料的 为配比范围,并找出了使用不同复合系统的混合材料的配比范围,并借助一些 微观测试手段,从机理上对复合系统的水化硬化机理进行了探讨,提出了他自 己的见解。通过大量的试验研究,大致确定了对硅酸盐水泥进行性能改性的硫 铝酸盐水泥熟料和硬石膏的掺量范围,在他的研究中 CSA 熟料/PC 熟料1/9, 石膏掺量范围为 5%一 15%,可以解决硅酸盐水泥早强发展缓慢的缺点:找出 第 4 页 了适用于不同复合系统的混合材种类和适宜的掺量范围在他的研究中,当石灰 石的掺量在 O%一 20%,粉煤灰和矿渣的掺量在 O%一 30%范围内时,对强度 的影响不是太大[4]。 1.3 论文选题的目的及意义 1.3.1 研究目的 本论文通过研究不同复合水泥体系的各项物理力学性能,来分析硫铝酸盐 水泥熟料掺量、石膏掺量对富硅酸盐复合水泥系统性能影响的变化规律,来确 定更好的配合比,为以后复合水泥的研究提供研究的基础。 基于硅酸盐水泥和硫铝酸盐水泥两大系列水泥的不同性能,研究二者的复 合体系是否能充分利用各自的优点,例如硫铝酸盐水泥的膨胀特性能否改善硅 酸盐水泥水化后体积收缩的问题,是不是可以利用硫铝酸盐快硬早期的特性改 善当前硅酸盐水泥早期强度偏低的问题等,来争取开发出一种新的产品。 研究表明在硅酸盐水泥中掺入一定量的硫铝酸盐早强水泥或者在硫铝酸盐 早强水泥中掺入一定量的硅酸盐水泥,亦即 C4A3 S-C3S—CaO—CaS04 系统是可以 共存的。为了获得性能优异的复合水泥体系,要控制水泥体系中 C4A3S、C3S、CaO 和 CaSO4。矿物含量和寻求最佳配比。所以有必要分析复合水泥体系的水化产物 和微观结构,从机理上进一步讨论复合水泥的水化机理,以了解各熟料矿物在 水化过程中的相互影响规律。 第 5 页 1.3.2 论文选题的意义 硅酸盐水泥中掺入石膏的目的是延缓其水化速度,而硫铝酸盐水泥中掺入 石膏的目的之一是促进其水化。当硅酸盐水泥中石膏掺入量太少时,凝结时间 得不到很好的控制;石膏掺量过多,将会导致安定性不良。而对于硫铝酸盐水 泥来说,不同的石膏掺量范围,水泥表现出不同的性能。如早强、膨胀等。一 般来说,水泥当中掺入粉煤灰之后,凝结时间有所减缓,但凝结时间还受粉煤 灰种类及不同种类粉煤灰掺量等因素的限制。通过选择和使用合适的粉煤灰, 不仅能降低成本、增加产量,而且能改善材料的某些性能。在硅酸盐水泥熟料 中掺入少量的硫铝酸盐水泥熟料,在石膏掺量适宜的情况下,复合之后材料的 凝结时间缩短,早期强度提高,后期强度也有大幅度增长。这为生产标号低, 同时凝结时间较慢的硅酸盐水泥熟料生产厂家提供了出路。 众所周知,硫铝酸盐水泥熟料成本高于硅酸盐水泥熟料,因此,在硅酸盐 水泥熟料中加入硫铝酸盐水泥熟料后成本会上升, 而利用混合材可以降低能耗, 充分利用资源,减少对环境的污染,充分利用工业废渣,实现可持续发展,并 且可以降低生产成本。我们考虑用混合材替代部分复合熟料以降低成本,这里 选用的混合材为粉煤灰。生产复合水泥,还可以节省 40%的燃料,在最佳掺量 下可得到高标号水泥及其它技术性能优良的水泥,而且水泥性能得到了改善, 提高了水泥产量,降低了成本,还处理了大量废渣。 水泥的水化是一个复杂的现象, 它与各反应物的特性(化学组成、 晶体结构、 细度、热历史)和环境条件(水灰比、溶解或分散在水中的化学物质、温度等)有 关。当硅酸盐水泥与硫铝酸盐水泥复合后水化产物就会很复杂,除硅酸盐水泥 水化产物外,还有一定的硫铝酸盐水泥的水化产物,并且二者的水化还会相互 第 6 页 影响。混合材加入后,也会对复合水泥的水化产生一定影响,不同掺量影响不 同。 当前水泥水化的研究思路都是通过实验测定水泥的各项物理性能,再利用 各种微观测试手段对物理性能进行解释说明,理论指导很少,不能对结果进行 预测,会产生很多缺陷。我们考虑是否能对水泥水化过程和结果进行计算和研 究,探讨水泥矿物的匹配问题,以期对实验进行理论预测[4]。 1.4 研究内容 为了更加全面深入地了解复合系统性能发展规律,同时为复合系统中相关 产品的开发应用提供更加完备与坚实的理论支持,在尚百雨论文研究的基础之 上,本论文选定不同的硫铝酸盐水泥熟料的数量、石膏的掺量、研究硅酸盐和 硫铝酸盐的复合水泥的性能[5]。 本论文主要研究内容如下: (1)研究不同配合比的复合水泥体系的性能变化规律, 确定性能价格比较好 的各组分的配合比。 (2)研究硫铝酸盐水泥熟料是否能提高硅酸盐水泥和粉煤灰复合水泥的早 期强度。 (3)对复合水泥体系进行微观测试,分析复合水泥的水化产物和微观结构。 根据测定结果,从机理上进一步讨论复合水泥体系的性能,了解各熟料矿 物在水化过程中的相互影响规律。 第 7 页 (4)以现有水泥水化理论为基础,对复合水泥的水化过程进行分析研究, 计算出可能的水化产物,来探讨复合水泥体系矿物的匹配问题。 第 2 章 实验内容 2.1 实验原料 为更接近工业生产,实验所用原料均为工业原料。主要包括硫铝酸盐水泥 熟料、硅酸盐水泥熟料(立窑)和硬石膏. 2.2 材料化学成分 表 1:材料化学成分(/%) 项目 PC 熟 料 CSA 熟 料 硬石 膏 表 2 熟料矿物组成及各率值 项 目 C3S C2S loss 2.74 SiO3 19.97 Al@O3 5.09 Fe2O3 4.45 CaO 62.97 MgO 2.42 SO3 1.55 TiO2 — 合计 99.19 0.24 8.24 34.35 2.02 41.45 2.54 8.87 1.48 99.2 8.03 1.33 0.45 0.33 38.19 2.25 49.01 — 99.59 矿物组成/% C 3A C4A C4A CT 铝 硅 率值 铝 铝 碱 KH3 第 8 页 F 3S 率 率 硫 比 硅 比 度 系 值 PC 熟 料 CSA 熟 料 23. — 55 — 4 78 2 5.1 55. 2.5 — — 7 7 5 3.8 4.1 0.9 — 59. 95 12. 02 5.9 4 13. — 53 — 4 1.1 — 9 2.0 — — 3 0.9 2.3 试验方案设计 为了系统地了解各组复合水泥的物理特性,本文按照国家标准规定的测试 方法进行了一系列的水泥常规性能测试,主要包括水泥的凝结时间试验、强度 试验等,结果见表 3.表中组别列中的 E、F、G、R 分别表示复合体系中硫铝酸 盐水泥熟料在复合熟料中的含量分别为 30%、20%、10%、5%。表中编号列表 示不同的石膏掺量,掺量范围为 0—30%,步进单位为 5%[6]。 表 3 水泥性能实验结果 组别 E E E E 编号 初凝 1 2 3 4 0 0 8 8 终凝 0 0 10 11 3天 8.6 10.8 13.5 19.5 28天 12.7 17.1 23.5 30.6 3天 1.4 1.7 2.8 4.3 28天 3.4 3.8 5.3 6.3 第 9 页 凝结时间/min 抗压强度/MPa 抗折强度/MPa E E E F F F F F F F G G G G G G G R R R R R R 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 10 11 12 0 0 10 12 15 18 19 0 7 47 53 65 69 70 5 9 72 80 82 85 14 17 19 0 0 13 19 23 25 25 0 11 69 72 82 89 96 8 19 121 129 131 142 27.8 7.3 5.7 9.5 12.0 14.8 25.0 24.9 7.0 5.7 14.6 18.5 35.5 31.9 19.9 11.6 9.0 27.6 35.4 48.4 39.7 30.5 25.7 42.4 0 0 13.0 16.0 28.9 37.3 30.4 0 0 18.4 29.5 50.5 45.4 0 0 0 33.5 48.5 57.5 52.0 30.0 15.8 5.5 0.8 0.5 1.2 1.5 2.5 4.9 3.1 0.8 0.4 1.9 4.3 6.8 6.4 2.9 1.4 0.7 4.0 5.8 7.2 5.3 3.8 3.0 8.7 0 0 3.5 4.4 6.2 7.1 4.9 0 0 4.4 5.6 8.3 7.8 0 0 0 5.9 8.5 10.0 9.3 2.4 1.8 第 10 页 R 7 95 159 22.7 12.1 7.8 1.2 2.3.1 复合水泥的制备 首先将硫铝酸盐水泥熟料,硅酸盐水泥熟料,二水石膏分别粉磨,细度控 制在比表面积为 350m2/kg。然后将粉磨的粉料按配方配比。 2.4 水泥物理性能测定 2.4.1 水泥净浆标准稠度用水量和凝结时间 按照 GB/T1346-2011《水泥标准稠度用水量、凝结时间、安定性检验方法》 进行测定. 2.4.2 水泥砂浆抗压强度和抗折强度 依照 GB2419—94 《水泥胶砂流动度测定方法》 和 GB/T 1767-1999(ISO679: 1989)《水泥胶砂强度检验方法》进行测定[6]。 2.5 水泥微观分析 2.5.1 水泥净浆水化产物的取得 将水泥净浆试样放入湿气养护箱内养护 4 小时后, 然后放入 20±1℃水中, 分别 养护 l 天、3 天、7 天、28 天,到达养护龄期后取出,敲成 2m 见方的小碎块, 立即将其放入丙酮溶液中密闭保存,以备后续试验使用。 第 11 页 2.5.2 XRD 分析水泥水化产物的组成 将规定龄期的净浆试块破型后,去除表面炭化层,在隔绝二氧化碳的气氛 中,分别加入丙酮或酒精中存放。用玛瑙研钵研磨使试样全部通过 4900 孔/厘 米 2 标准筛。为使样品完全脱水,加入丙酮和酒精至少不少于两次。经脱水处 理的水化物试样,方可进行 x 射线衍射分析。研磨时需注意,每磨完一个样品 都需要用稀盐酸清洗研钵后方可再磨下一个样品。 2.5.3 扫描电镜(SEM)分析法观察水泥净浆水化产物的形貌 按不同龄期从丙酮溶液中取出各龄期水化水泥的小碎块,放 70。C 的烘干箱内 烘干 2 小时后对小试样进行抽真空喷金处理, 用扫描电镜(SEM)观察水泥水化产 物的形貌[7]。 2.6 试验仪器与设备 2.6.1 宏观测试用仪器设备 水泥稠度凝结测定仪(无锡建筑材料仪器机械厂) 水泥胶砂振动台(沈阳市北方测试仪器厂) 水泥胶砂振动台 GZ 一 85 型(无锡市建筑材料仪器机械厂) 水泥净浆搅拌机 SJ—160 型(沈阳市北方测试仪器厂) 水泥胶砂搅拌机 NRJ 一 411B 型(无锡市建材试验设备厂) 第 12 页 电动水泥胶砂流动度跳桌 NLD 一 2 型(无锡市建筑材料仪器机械厂) 40×40 水泥胶砂三联试模(无锡建筑材料仪器机械厂) NYL 一 300 型压力试验机(中国建筑材料科学研究院水泥科水 学研究所) 2.7 微观测试用仪器设备 x 一射线衍射仪(日本理学 Dmax—Ra II 型) 扫描电镜测定仪(日本理学 Dmax—Ra II 型) 第 3 章 分析与讨论 各组配比水泥的矿物组成不同,复合水泥的性能也就各异.现从如下几个 方面就组成材料对复合水泥性能的影响规律加以分析说明[8]. 3.1 组成材料对复合水泥凝结时间的影响 影响水泥凝结时间的因素很多,而且也比较复杂,其中材料的矿物组成对 凝结时间起着决定性的作用.本文按国家标准规定的方法,测定了复合后各组 材料在相同的试验条件下的凝结时间.试验时采用标准稠度用水量对应的水灰 比,采用机械搅拌的方式搅拌。试验时的温度为 20±3℃,相对湿度≥90%[9]。 第 13 页 3.1.1 熟料组成对复合水泥凝结时间的影响 为了比较直观地了解熟料组成对复合水泥凝结时间的影响,由试验结果我 们可以看出,对于富 PC 熟料复合水泥来说,当系统中石膏掺量不小于 10%时, 凝结时间随其中 CSA 熟料掺量的增加而显著减小. 当 CSA 熟料含量大于 20%时, 凝结时间基本上在 lO 一 20min 之问,且初、终凝时间差不是太大.而当石膏掺 量为 O%, CSA 熟料含量超过 10%时, 水泥拌水之后发生瞬凝; 当石膏掺量为 5%, CSA 熟料含量超过 20%时,水泥与水拌和之后也发生瞬凝。总之,在 PC 熟料中 掺入 CSA 熟料,在一定的石膏掺量下,复合水泥都表现出凝结加速的特点。当 CSA 熟料含量小于 10%,石膏掺量在 5%-15%时,复合水泥的凝结时间能够达 到硅酸盐水泥国家标准的要求,但明显缩短.当其中 CSA 熟料含量。超过 10% 时,复合水泥表现出快凝快硬的特性.由此可见,在本文所研究的复合体系中, CSA 熟料、PC 熟料和石膏在水化过程中具有相互影响,相互促进的作用。 3.1.2 石膏掺量对复合水泥凝结时间的影响 由实验得出,当石膏掺量小于 5%时,凝结速度比较快,而当石膏掺量大于 5%时,凝结速度相对于石膏掺量小于 5%时的情况来说,凝结速度变慢.另外 从图 1 我们还可以明显地看出,当 CSA 熟料含量一定时,随石膏掺量的增加, 凝结时间有所减缓。 由试验数据我们还可得到石膏掺量对复合水泥凝结时间的影响,我们可以 看出,当石膏掺量大于 10%时,对于 CSA 熟料含量为 E、F、G、R 时的各种情况 下,凝结时间随石膏掺量的增加而增大,不过 E、F 两组凝结时间的变化范围比 第 14 页 较窄,初凝时间在 lOmin 左右,终凝时间不超过 40min;而 CSA 熟料含量为 G 和 R 时,凝结时间随石膏掺量的增加,变化范围相对来说要大一些,同时,初、 终凝时间差也比较大。 综上所述,CSA 熟料一 PC 熟料一硬石膏所组成的三元系统可以大致鲻分为 三个性能各异的材料区域,即富 CSA 熟料区域、富 PC 熟料区域和其他区域.在 富 PC 熟料区域中,当 CSA 熟料含量小于 10%,硬石膏掺量在 10%左右时,复 合水泥的凝结时间相对于硅酸盐水泥来说明显缩短的同时,强度也有相当幅度 的提高;当 CSA 熟料含量为 5%,石膏掺量在 10%左右时,强度可以 1—2 个强 度等级[5]。 3.3 R3 微观试验结果与分析 为了进一步探讨上述试验现象的发生机理, 我们用 R3 的掺量(10%石膏, 5% 硫铝酸盐水泥熟料)进行了一系列的微观试验,结果如下: 3.3.1 XRD 测试结果与分析 R3 与水发生反应生成水化产物主要有钙矾石(C3AS3H31)、单硫铝酸钙(C3AS3H12) 和氢氧化钙(CH)衍射图谱还可以看出,早期的衍射图谱中还有一定量的二水石 膏。不过,随着水化的进行,在后期的水化产物中二水石膏消失,单硫型水化 硫铝酸钙的衍射峰增强.同时,高硫型水化硫铝酸钙的衍射峰稍有减弱。 3.3.2 扫描电镜 SEM 测试结果与分析 各龄期水化样的 SEM 照片可以看出,水化产物中含有大量针、棒状的钙矾 第 15 页 石。而且钙矾石的形成量随水化龄期的增长而明显增多。从电镜照片中,我们 还可以看到有大量的凝胶存在,依据 R3 的矿物组成分析,这些凝胶包括水化硅 酸钙凝胶、水化氧化铝凝胶等.由于钙矾石针、棒状晶体的相互搭接.再加上 大量凝胶的攀附添充,扶丽使永化产物牢固鲍连接起来,构成一个三维空间牢 固结合并且密实的整体[10]。 第 4 章复合水泥水化机理进一步探讨 我们知道,通常情况下,硅酸盐水泥中掺入石膏的目的是延缓水化速度, 而硫铝酸盐水泥中掺入石膏的目的之一是促进水化。当硅酸盐水泥中石膏掺量 较少时, 凝结时间不能得到很好的控制; 石膏掺量过多, 将会导致安定性不良. 而 对于硫铝酸盐水泥来说,不同的石膏掺量范围,水泥表现出不同的性能,如早 强、膨胀等。对于 R3 来说,从其矿物组成来看,相当于在硅酸盐水泥中掺入少 量的硫铝酸盐水泥熟料和石膏。由于硫铝酸盐水泥熟料和石膏的掺入,使得 R3 与水拌和之后,很快地发生反应,使拌和物中生成一定量的高硫型水化硫铝酸 钙.我们认为这是导致 R3 凝结时问和强度改善的原因之所在.当掺人的硫铝酸 盐水泥熟料中的 C4A3S 完全发生水化之后,R3 的水化进程基本上与硅酸盐水泥的 水化进程摆一致, 不过, 由于硫铝酸盐水泥熟料中 C2S 的含量比硅酸盐水泥熟料 中的含量高,所以对于 R3 来说,从强度发展的角度来看,其后期强度应该有所 保证,我们的试验结果验证了这一点。还有,尽管复合熟料中 C2S 的含量有所提 高,但由于 C4A3S 的快速水化,对于硫铝酸盐水泥熟料所引入的 C2S 来说,其表 面会很陕暴露出来,与水生反应。所以 R3 在 C2S 高的情况下仍然能够以比硅酸 盐水泥水化还要快的速度进行。这一点,有别于传统意义上的高贝利特水泥。 第 16 页 R3 强度高于硅酸盐水泥的原因还与其水泥石结构有关.我们知道,对于硅 酸盐水泥来说,其主要水化产物为高硫型水化硫铝酸钙、水化硅酸钙凝胶、氢 氧化钙等.而对于 R3 来说,其水化产物中除了含有硅酸盐水泥的水化产物之外, 还有一定量的铝胶生成,而且高硫型水化硫铝酸钙的量要比硅酸盐水泥水化生 成的多一些.这样,水化钙钒石形成的强度骨架被大量的胶体填充,从而使水 泥石的结构更加密实,孔隙率降低,强度提高。而且,我们认为,R3 配料中 C4A3S 的引入,对于减小水泥石的收缩将会起到积极的作用。 结论 (1)在硅酸盐水泥熟料中掺人适量的硫铝酸盐水泥熟料后,当石膏掺量适宜时, 复合水泥的强度能够得到显著的提高; (2)在硅酸盐水泥熟料中掺入适量的硫铝酸; 盐水泥熟料后,复合水泥的凝结时间缩短,而且初终凝时间差减小; (3)在硅酸盐水泥熟料一硫铝酸盐水泥熟料一石膏三元系统的富硅酸盐区域中, 可以制备出满足硅酸盐水泥国家标准的水泥.这对于解决我国立窑水泥现存的 问题提供了又一思路。 参考文献 [1]王来国, 芦令超, 程新. 硅酸盐与硫铝酸盐矿物复合水泥材料的研究进展[J]. 济 南大学学报(自然科发学版),2004,18(1):24—27 . [2]袁润章.胶凝材料学.第 2 版.武汉理工大学出版社.1996. [3]王福川.土木工程材料.中国建材工业出版社.2001. 第 17 页 [4]李迁.硫铝硅酸盐与硅酸盐水泥研究.辽宁大学学报.2006.33(2). [5]沈威,黄文熙,闵盘荣编.水泥工艺学.武汉工业大学出版社,1986. [6] 郭俊才.水泥及混凝土技术进展.中国建筑工业出版社,1993 [7]International Congress on the Chemistry of Cement, 1991 [8]王燕谋等.硫铝酸盐水泥.北京工业大学出版社,1999 [9]吴宗道.硫铝酸盐水泥的水化产物 铝胶.中国建材科技. 1995,4(1) [10]张量等.铁铝酸盐水泥高强混凝土的研究与应用.混凝土与水泥制 品.1993(6) 致谢 本论文是在贺格平导师的关心和指导下完成的。在完成科技论文期间,导 师给予了本文作者精心的学术指导,提供了宽松的学术氛围,使我在写作过程 中受益匪浅。导师以严谨的治学之道、丰富的科研经验、宽容豁达的胸怀、渊 博的知识、积极乐观的生活态度,为我树立了一辈子学习的榜样,并使我受益 终身。值此论文完成之际,衷心祝愿导师工作顺利,身体健康,万事如意。 最后,特别感谢我的亲朋好友,给予了我极大的支持、鼓励、关怀!祝愿 你们身体健康,万事如意,工作顺利。 第 18 页 张宁 2013 年 6 月 西安建筑科技大学华清学院 第 19 页

pokerking club

返回

网站地图

Copyright©pokerking club  苏ICP备13041245号  技术支持:华润水泥控股有限公司